
Unleveled

1



Contents
1. Introduction 4

1.1. Project Overview 4
1.1.1 Target Audience 4

1.2. Technical Description / Implementation 4
1.2.1. Core Loop & Gameplay 5
1.2.2. Development Tools 6

2. Art 7
2.1. Artistic Style 7
2.2. Game World 7
2.3. References 8

3. Game Design 9
3.1. Features 9
3.2. Unique Selling Points 9
3.2. Mechanics 9
3.3. Player 10
3.4. NPC’s 10

3.4.1. Neutral Characters 10
3.4.2. Enemies 11
3.4.3. Special Enemies 12
3.4.4. Bosses 13

3.5. Progression and Quests 13
3.6. Items 13
3.8. Puzzles 19
3.9. Player Control and Camera 19
3.10. Key Design References 20

4. Level Design 22
4.1. Game World Design 22
4.2. Dungeon Design 23

4.2.1. Initial Dungeon Design 23
4.2.2. Drunkard’s Walk Algorithm 23
4.2.3. Loot and Enemy Generation 24
4.2.4. Safe Zone 26
4.2.5. Boss Zone 27

5. UI 28
5.1. UI Distribution 28

5.1.1. Main Menu: 28

2



5.1.2. Pause Menu: 29
5.1.3. Character Page: 29
5.1.4. Inventory: 30
5.1.5. Bottom Bars: 30
5.1.6. Recipe Menu: 30

5.2. Concepts 31
5.3. Text 31

6. Sound 32
6.1. Music References 32
6.2. Where to place the sounds 32

7. Save game 32

8. Cut out Features 33
8.1. Art 33
8.2. Quests 33
8.3. NPCs 33
8.4. Items 33
8.5. Dungeon 33
8.6. Tutorial 34
8.7. Extras 34
8.8. Sound 34
8.9. Lore 34
8.10. Save game 35

9. Bibliography 35

3



1. Introduction

1.1. Project Overview
In Unleveled, you control one character (name to be decided) that find itself stranded in a
beach. As the player explores the closest village, it finds out that many of its habitants are
artificially deeply asleep. The only initially awaken NPC’s is a fairy that explains the player
that a series of curses have been placed in this village, and that even though it (the fairy)
has been able to remove it from some people, the remaining ones are far more powerful than
expected and can’t be removed by normal meanings.

The core of these curses remain in the basement of one house (blue house), and the
player is the only one with enough willpower to investigate it from its inside (see core loop).

When the player defeats a new boss from a new layer, a person in the village will be freed
from its curse. Once all people have been freed from the village, the cursing entity will then
become more powerful as it will present itself to the player and place a very big curse in the
entire village. The dungeon also evolves to be more difficult. This big curse is removed
periodically as the player progresses through the dungeon and its layers. When this curse is
removed, a final battle will occur, which will lead to the end of the game.

(See lore and dungeon in cutout features)

1.1.1 Target Audience
Our main audience for our game is young people that enjoy casual and visually attractive
games with an added spice of difficulty. Being a procedurally generated dungeon crawler, our
game will most likely attract attention from people that also play or have played other
dungeon crawlers and want it to be a bit more difficult as well as rewarding than the other
games.

1.2. Technical Description / Implementation
Our game will be a hardcore dungeon crawler based rpg, randomly generated levels and
rpg-like features that will target people that like procedurally generated games with an added
spice of difficulty. The game invites the player to progress through the world by letting it know
the perils of the progressively more difficult dungeon as well as its treasures.

4



1.2.1. Core Loop & Gameplay

The player starts in a crossroads zone where it has two possible ways, up or right. The path
above it has two houses, one is the entrance to the tutorial and the other one the exit point.

In the tutorial zone there are mainly three zones, in each one a core mechanic is explained.
The first one is about basic combat, the second one is about throwing weapons and the third
one covers basic crafting.

The path to the right, on the other hand, leads the player to the main village, where all
houses but one are closed (the one that belongs to the player).

Inside the house the player can find a Crafting Station, an Anvil, a staircase to the
basement, a permanent Chest to store things as well as the Save Game interactable.

The basement contains an entrance to the Dungeon, where the player can progress through
the game. See dungeon design for an explanation of each of its elements.

5



1.2.2. Development Tools
For the development of this project, we needed to choose the specific technologies that we
would use in terms of development. Based on experience and convenience, we decided that
Unreal Engine, Unity, DXT (DirectX Toolkit) and a custom renderer were the options to
consider.

First we considered using Unity because of how easy it is to use, but we quickly discarded it
because it doesn’t allow us to embed C++ code. Both the DirectX toolkit and the custom
renderer would’ve made the development very exciting but far more painful in terms of
systems development and debugging because of the amount of things we would’ve been
required to do, which is why we discarded both of them.

In the end, we decided to go with Unreal Engine in its 4.24.3 version because of how used all
the members of the group are to it, the fact that it uses C++, and the amount of features that
it includes out of the box in terms of systems, even if we don’t have full control over them.

We decided to develop our game for Microsoft Windows because all the members of the
group have worked on Windows applications and we thought that starting the development
on a new platform might have introduced unexpected problems that might have taken us
more time than expected.

6



2. Art

2.1. Artistic Style
The game has a 16x16 pixel art style with minimum details. It uses bright and colourful colors
for places with no danger and darker colors to more aggressive zones. This style was
chosen because we want to relate to older generations and create the feeling of nostalgia to
the player. Another reason why we chose this artistic style is because it is easier for us, who
are not artists, to create some pieces of game art for our game.

2.2. Game World
We intended to create an Overworld that encourages the player to explore it, with different
small zones that unlock different things.

Overworld Example of Dungeon floor

We (internally) divided the game into two subworlds: the Overworld and the Dungeon.
Depending on the current state of the game, different music will be played in the Overworld
(see project overview) (exploring music, danger music) (see sound in cut out features). In
the Dungeon, different music (see sound in cut out features) will be played and different
colors will be used, depending on its depth (see dungeon in cut out features)

7



2.3. References
● Moonlighter: Serving as one of the main references for our game, we share many of

the features that Moonlighter includes, the main one being a rogue-like RPG with
procedural dungeon generation.

● Enter the Gungeon: Following the dungeon crawler path, Enter the Gungeon served as
a baseline for how arcade we wanted the game to be in terms of amount of enemies as
well as being run-based or not.

● Stardew Valley: Mostly regarding art style.

8

https://moonlighterthegame.com/
https://dodgeroll.com/gungeon/
https://www.stardewvalley.net/


3. Game Design

3.1. Features
● Procedurally generated dungeon crawler
● Questing system where the player must accomplish as series of objectives to

progress through the game (see quests in cut out features).
● Crafting System which allows the player to create items with materials
● Player progression through rpg-like features

○ Equipment
○ Special skills

● Village / Overworld where the player can interact with non hostile NPCs (see NPCs in
cut out features).

● Harder enemies as the player progresses through the dungeon

3.2. Unique Selling Points
● Not entirely run-based: the player shall use its own equipment to gather more things

in the dungeon.
● Dying removes all the items from the player’s inventory, including everything

equipped.
● Layered dungeon depth: when the player reaches a certain level of one layer, it will

transition to another one, which will have different traits such as different enemies,
different environments and different objects (see dungeon in cut out features).

3.2. Mechanics
Aggressive:

● Weapon Attack
○ Pokes with the weapon in a range and causes damage to enemies.

● Weapon Throw
○ Throw the weapon, dealing damage to all enemies that get hit..

● Skill (Rune) system
○ There are three types of runes or skills

■ Fireball: Projectile which inflicts damage to enemies
■ Add Stats: For a period of time, the player gains some stats temporarily.
■ Time Stats: For a couple of seconds the player gains stats permanently.

Passive
● Equipment

○ The player can equip items to gain skills and stats.
● Crafting

○ Allows the player to craft items to improve their equipment and progress
throughout the game.

○ In order to craft something the player shall first get its recipe.

9



3.3. Player
● Progress through the dungeon to acquire loot and do quests (see quests in cut out

features).
● Acquire enough materials to upgrade equipment.

○ Materials are used to craft weapons and equipment.
● Actions:

○ Use items: certain items can be used to receive something (potions gives health,
gear gives stats).

○ Attack with weapon: Pokes with the weapon in a range and causes damage to
enemies.

○ Throw weapon: Unequips the weapon and throws it forward at a certain distance.
○ Attack with skills (Runes): Some items have skills (Runes) which can throw

fireballs to enemies.
○ Store items in its inventory.
○ Craft objects: The player can craft items in the crafting table if it has the materials

needed. These items shall be used to further progress in the dungeon which will
make it progressively harder.

3.4. NPC’s
● As the dungeon progresses (levels), enemies get harder by having more health points

and dealing more damage (see dungeon in cut out features).
● Chance to drop items from a pool of objects on death so that the player can craft better

items and therefore dive deeper in the dungeon and progress further. (see extras in cut
out features):

● Materials - Used by the player for crafting better items or complete quests
● Recipes - New items for the player to craft
● Gold - Currency used in the Overworld shop

By having the enemies also drop objects we add another way of getting objects to improve
the player’s gameplay (see dungeon in cut out features).

● Each npc has a special role in the overworld, which affects the way they interact with
the player. While some npc’s might only give you quests, others might only sell items
(see NPCs in cut out features).

3.4.1. Neutral Characters
As we mentioned before, there are different types of NPCs:

● Vendor NPCs - These ones act like a shop for the player where he can buy or sell
anything that he currently has.

● Quest NPCs - These ones will hand in quests for the player to complete. Some of
them will not have the quest right away because the player may need to complete
some previous quests before being eligible to get the next one.

● Information NPCs - These ones will just have some dialog for the player to read.
Some of them will have important information that could help the player in some way,
ranging from where to find some special loot or a key way to kill a certain enemy.

● Item giver NPCs - These one will just give the player some items along with some
sort dialog.

10



Current NPCs

Image Name Type Description

Fairy Item giver

Gives the player a Knife after
telling him that she is there to

help him progress through
his house basement. (which

is the actual dungeon)

3.4.2. Enemies
We wanted to have variety in our enemies so we decided to create different behaviours to
create diversity and more interesting dungeons and combat.
There are different types of enemies:

● Melee: This type tries to get close to the player to cause damage.
● Range:  Range enemies have a list of patterns that it has to make. A pattern

establishes how the enemy is going to shoot projectiles.

Image Name Type Description Stats

Follow Melee

Will follow the
player and

damage him
when close

enough.

Health: 10
Damage: 5
Movement Speed: 75

Fast
Follow Melee

Will follow the
player at a faster

rate than the
Follow enemy, but
has lower health.

Health: 1
Damage: 3
Movement Speed: 245

Rush Melee

Goes towards the
player until is

close enough and
then charges a
rush attack to

rapidly close any
position gaps

Health: 10
Damage: 5
Movement Speed: 125

11



Range Ranged

When the player
is close enough,

will launch a
projectile towards

the player.

Health: 15
Damage: 2 x1 attack
Movement Speed: 100
Projectile Movement Speed:
400

3.4.3. Special Enemies

We have some special enemies that are more complex than the rest. For this special
enemies we added a new type that uses weapons:

● Weapon (Melee and Range) : This enemy carries a weapon that is used to hit the
player if it is close enough and has a chance of throwing it if the player is in a certain
range.

The multirange enemy is just a ranged enemy with different patterns.

Image Name Type Description Stats

Armored Weapon
Melee

Capable of using any
weapon he finds. This
enemy will attack the

player with the current
weapon he has
equipped and

sometimes he can
throw the weapon to

the player.

Health: 20
Damage: Based on
current weapon
Movement Speed: 100

Multi
Range Ranged

When the player is
close enough, will

launch multiple
projectiles towards all 4

axis

Health: 15
Damage: 3 x4 attacks
Movement Speed: 100
Projectile Movement
Speed: 400

Behaviour component

● The Behaviour Component manages how the AI is going to react to the player
actions and deliver a credible response.

● Types of AI:
○ Wander: Wanders around a specific area.

■ All enemies wander if the player is not in range.
○ Follow: Follow a specific target.
○ Rush: Rushes to the target.
○ Range: Fires projectiles following a pattern or following a target.
○ Weapon: Picks up a weapon and attacks the player when it is close. There is

a chance to throw the weapon if the player is in a certain range.

12



3.4.4. Bosses

For the boss, we wanted him to have different behaviours and stages, so we added a
behaviour list that decides which behaviour to use with the health it has. This boss can
recreate any behavior of any enemy explained before.

Image Name Description Stats

Apple King
Capable of using any

behaviour. The
behaviours are set in a

list.

Health: 200
Damage: 4
Movement Speed: 100

3.5. Progression and Quests
● The player does not have stats per-se, equipment is what gives it progression, and

progressing in equipment will affect the capabilities of the player in terms of output
damage and resistance to it.

● As the player progresses through the levels, the enemies will become harder: faster,
more damage and harder to kill (see dungeon in cut out features).

● Quests that progressively challenge the player, forcing him to go to harder levels as the
game progresses (see quests in cut out features):

● Different types:
○ Retrieve an object that only appears within a level
○ Kill a certain amount of a given enemy
○ Defeat an specific boss
○ Explore an area within a level
○ Hand in a given object to another NPC
○ Find certain NPCs in the dungeon and save them to unlock different features in the

Overworld

3.6. Items
● Each equipable piece has at least 4 rarity categories, which are common, rare,

legendary or unique (fixed spawns for unique items, a quest needs to be completed to
upgrade them (see items in cut out features)). Every equipable item contributes to the
player stats in a different way depending on its type:
○ Weapon increase damage output
○ Armor equipment decrease damage input and/or increase movement speed

● 4 types of weapons:
○ Rapier (fast attacking, low damage one handed sword),

13



○ Sword and shield (allow some protection with medium damage),
○ Two handed sword (slow attacking very high damage)
○ Bow (medium damage, ranged attacks).

● Armor equipment (see items in cut out features):
○ boots: increases movement speed.
○ legs: increases armor (medium).
○ thorax: increases armor (high).
○ arms: increases armor (low).
○ head: increases amor (medium).

● Each piece of equipment has a probability of spawning with slots, which will allow the
player to place runes that slightly enhance the stats. probability increases with rarity
(common items have 0%), up to 2 slots per item (see items in cut out features).

● Each piece of equipment can be upgraded up to three times to increase the stats that
the player received when equipping it. (blacksmith (see NPCs in cut out features)).

● The player can effectively improve a piece of equipment by placing a rune in slots (if it
has it, slots are based on probability) (see items in cut out features).

● Projectile type: throws a projectile which damages the enemies.
● Objects required for certain quests such as a letter for another NPC or some materials

that the blacksmith needs. (see quests in cut out features).
● Crafting materials (to create equipment, cosmetics).
● Potions and throwables (see items in cut out features).

Consumables

Common Potion Heals the player for 2

Rare Potion Heals the player for 4

Legendary Potion Heals the player for 8

Materials

Common Stone Used for crafting

Common Blue Shards Used for crafting

Rare Silver Ingot Used for crafting

Rare Red Gem Used for crafting

Rare Green Gem Used for crafting

Legendary Blue Gem Used for crafting

Legendary Gold Ingot Used for crafting

14



Recipes

Common Wood Spear Stick x1
Knife x1
Stone x5

Rare Archer helmet Knife x1
Ginger Helmet x1

Rare Knight Helmet Purple Helmet x1
Red Gem x2

Green Gem x2
Silver Ingot x2

Rare Pirate Helmet Knife x1
Ginger Helmet x1

Rare Princess Helmet Pumpkin Helmet x1
Blue Shards x5

Rare Silver Boots Basic Boots x1
Silver Ingot x10

Rare Rusty Sword Knife x1
Stick x1

Silver Ingot x5

Rare Sword Rust Sword x1
Blue Shards x10

Rare Silver Sword Sword x1
Silver Ingot x10

Legendary Doctor Helmet Ginger Helmet x1
Common Potion x10

Rare Potion x5
Legendary Potion x2

Legendary Gold Helmet Knight Helmet x1
Gold Ingot x10

Legendary Mage Helmet Basic Mage Helmet x1
Red Gem x5

Green Gem x5
Blue Gem x3

Legendary Gold Boots Silver Boots x1
Gold Ingot x10

Legendary Gold Sword Silver Sword x1
Gold Ingot x10

15



Weapons

Common Stick Stats:
Attack: 1

Range: 0.50
Attack rate: 4.0

Skill: None

Common Knife Stats:
Attack: 2

Range: 0.75
Attack rate: 4.0

Skill: None

Common Wood Spear Stats:
Attack: 3

Range: 3.00
Attack rate: 1.0

Skill: None

Common Rusty Sword Stats:
Attack: 3

Range: 1.00
Attack rate: 4.0

Skill: None

Common Sword Stats:
Attack: 5

Range: 1.00
Attack rate: 4.0

Skill: None

Rare Silver Sword Stats:
Attack: 6

Range: 3.00
Attack rate: 4.0

Skill: None

Legendary Gold Sword Stats:
Attack: 10

Range: 2.00
Attack rate: 4.0
Skill: Fireball

Gear

16



Common Ginger Helmet Stats:
HP: 0

Armor: 5
Attack: 0

Movement Speed: 0
Skill: None

Common Pumpkin Helmet Stats:
HP: 2

Armor: 3
Attack: 0

Movement Speed: 0
Skill: None

Common Purple Helmet Stats:
HP: 0

Armor: 5
Attack: 0

Movement Speed: 0
Skill: None

Common Basic Mage Helmet Stats:
HP: 1

Armor: 1
Attack: 0

Movement Speed: 0
Skill: None

Common Basic Boots Stats:
HP: 0

Armor: 0
Attack: 0

Movement Speed: 25
Skill: None

Rare Archer Helmet Stats:
HP: 0

Armor: 5
Attack:  2

Movement Speed: 0
Skill: None

Rare Knight Helmet Stats:
HP: 0

Armor: 10
Attack: 0

Movement Speed: 0
Skill: None

17



Rare Pirate Helmet Stats:
HP: 5

Armor: 0
Attack: 2

Movement Speed: 0
Skill: None

Rare Princess Helmet Stats:
HP: 5

Armor: 5
Attack: 0

Movement Speed: 0
Skill: None

Rare Silver Boots Stats:
HP: 0

Armor: 0
Attack: 0

Movement Speed: 50
Skill: None

Legendary Doctor Helmet Stats:
HP: 0

Armor: 7
Attack: 0

Movement Speed: 0
Skill: Health per second

Legendary Gold Helmet Stats:
HP: 0

Armor: 10
Attack: 0

Movement Speed: 0
Skill: Increases Attack by 5

Legendary Mage Helmet Stats:
HP: 4

Armor: 4
Attack: 0

Movement Speed: 0
Skill: Fireball

Legendary Gold Boots Stats:
HP: 0

Armor: 0
Attack: 0

Movement Speed: 75
Skill: None

18



3.8. Puzzles
● At the start of the game, the player will have its weapon of choice (rapier, sword and

shield, two handed sword or bow), and the rest of the basic weapons can be found
through the overworld, it will have small hints that will lead to their position. **

● Leveled Sword: extremely powerful sword only achievable by
progressing through the game. (direct reference to The Legend of
Zelda: Breath of the Wild) (see extras in cut out features)

○ When trying to retrieve the sword, the player will suffer
damage for as long as it is trying to extract it from the stone.

○ It will require the player to have at least 100 health.
○ This is the only item in the game that can get its stats

improved by killing enemies as well as runes and blacksmith.
○ This is the only item that will not be destroyed if the player dies while having it in his

inventory / equipped.

Master Sword

3.9. Player Control and Camera
● [W A S D] movement in keyboard, [Left Thumbstick] with a gamepad.
● [Left Mouse Button] attacking with keyboard, [attack] with a gamepad.
● [B] inventory in keyboard, [inventory] with a gamepad.
● [E] to interact with everything, [interact] with a gamepad.
● [Space bar] to throw the current weapon, [throw] with a gamepad.
● [Left Mouse Button] on an inventory item to use it, [use] with a gamepad.
● [Right Mouse Button] on an inventory item with an open chest to store it, [store item]

with a gamepad.
See gamepad in cut out features

19

https://www.nintendo.com/games/detail/the-legend-of-zelda-breath-of-the-wild-switch/
https://www.nintendo.com/games/detail/the-legend-of-zelda-breath-of-the-wild-switch/


The camera trails the player instead following it, meaning that whenever the player moves,
the camera will shortly follow the player with a smooth movement.

3.10. Key Design References
● Made in Abyss

Initially, we wanted the dungeon to have a very deep meaning both in lore and
gameplay, where each of the dungeon layers would have a separate theme and different
traits with it, but was discarded for this prototype because of the complexity it would’ve
added to the dungeon generation (see dungeon in cut out features).

In Made in Abyss, each layer of the
map has different traits, including
different objects and enemies, and
the deeper the point the user is at
the abyss, the harder it is (Full
resolution image of the abyss here).
The abyss served as an
architectonical figure into building
the city in its circular crater (full
resolution image of the city and the

abyss here)

20

https://madeinabyss.fandom.com/wiki/The_Abyss
https://wallpapercave.com/wp/wp2416084.png
https://wallpapercave.com/wp/wp2416084.png
https://static.wikia.nocookie.net/madeinabyss/images/e/e6/Abyss_Anime_Square.png/revision/latest?cb=20200720191820
https://static.wikia.nocookie.net/madeinabyss/images/e/e6/Abyss_Anime_Square.png/revision/latest?cb=20200720191820
https://static.wikia.nocookie.net/madeinabyss/images/e/e6/Abyss_Anime_Square.png/revision/latest?cb=20200720191820


● Escape from Tarkov
Although nothing alike in terms of genre, our game shares some mechanics with the
FPS, the main one being that the player needs to equip itself with things it has gathered
from the dungeon and save things in its house for further crafting. In Escape From
Tarkov, the player has a series of slots in which a piece of equipment can be placed. The
decision of having something in it or not after entering any of its maps is up to the player.
We also gave the player a permanent inventory in which it can store things as it
progresses through the game.

Player slots in Escape from Tarkov Character Page in Unleveled

Chest in the house

Inventory in Escape from Tarkov

21

https://www.escapefromtarkov.com/


4. Level Design

4.1. Game World Design
Certain parts of the overworld are tightly connected to the Dungeon, serving as shortcuts to
different layers (see dungeon in cut out features).

An early prototype of the dungeon layering

The mountain covered circle represents the village (Overworld), and each one of the drawn
places represents a different dungeon from a different layer, and each one of them has 5
separate floors. As the player progresses through the game, shortcuts can be unlocked from
the village to intermediate points between the layers (see dungeon in cut out features).

Screenshot of our actual Overworld

22



4.2. Dungeon Design

4.2.1. Initial Dungeon Design
Initially, each of the rooms would have been pre-made and would have small areas in which
enemies and/or loot could appear, and these rooms would be connected with pathways (see
game world design).

Initial Concept of a single dungeon room

4.2.2. Drunkard’s Walk Algorithm
The initial dungeon design was discarded due to the possible complications that making the
pathways could cause and was instead changed to a single-floor single-room algorithm but
with a much wider result spectrum, where the room themselves would be the random factor.
In the end we decided to have a version of the Drunkard’s Walk algorithm implemented.
Our algorithm’s procedure consists of:
● Having a pre-sized grid and placing an entity in a given position (in our case this

position is the middle of the grid).
● Each iteration (up to a maximum of X, in our case depends on the dungeon size and

difficulty), the entity walks towards a random direction, and if the tile under that given
position hasn’t been marked, it is now marked.

● When the algorithm runs out of iterations, all marked tiles shall now get processed. In
this process, the tile will be evaluated to be either a wall or a floor.

● After the edge cases have been evaluated, the entry and exit point are set up randomly
with a minimum distance between them.

Entry point (left) and exit point (right

23

http://pcg.wikidot.com/pcg-algorithm:drunkard-walk


● Then the dungeon is divided into different area types, which are used to set up closed
zones where enemies and loot can be spawned.

● Spawn enemies and loot in those areas and once that is done mark the dungeon as
finished.

Simplified / visual explanation of the algorithm

With this implementation, we achieved much more versatile and extravagant layouts at the
cost of having to specifically consider a lot of edge cases.

The dungeon was initially going to be divided by several layers each of one would consist of
several floors with common traits such as visual appearance and a variety of enemies, but
this idea was discarded due to added complexity to the generator. Some layers were going
to have an intermediate level that would’ve allowed the player to skip entire layers (from start
to layer 3, from layer 1 to layer 3….), but this idea was also discarded because of the
aforementioned possible added complexity (see dungeon in cut out features).

4.2.3. Loot and Enemy Generation
Once the dungeon has been fully generated, all its innards must be generated, which include
everything related to things the player can gather from it. To do this, we used a method that
consists on the following points:

24



● For each dungeon size (small, medium and big), there is a set of variables that
increase both with the aforementioned and with an logarithmic curve which is bound
to how many dungeons the player has explored throughout the same run. This set of
variables determines the maximum amount of chests.

● Each dungeon is then divided into smaller areas, and it is in these areas that the loot
can be spawned, as well as enemies.

An early example on how these areas divide the dungeon, red for big areas,
green for medium ones and cyan for small ones

25



An up to date example of loot and enemies
● Each chest rolls a number between 2 and 6 to determine the amount of objects it will

have inside it, and depending on the smaller area it is within, the odds of a rarer
object increase (the bigger the area the bigger the chance). Once this has been
calculated, an object with the given rarity is requested to the item manager (holds a
reference to every item class and is used to request items from it) and then it is
placed inside the chest.

Example of a chest inside the dungeon

● For the enemy spawning, we created a pool manager takes care of all the enemies
that need to be placed in the dungeon, and the way it works consists on the following
points:
○ At the start of the generation, the pool size of each enemy is requested for

change.
○ After this request, the pool manager will then decide if it should start allocating

more objects or leave it as it is, which depends on the current size (requested
size) and the actual size (amount of allocated objects).

○ If the current size is bigger than the actual size, then the pool will begin to add
items to the pool until its size is filled (one item per tick, to avoid game stalling).
While the pools are being allocated, the dungeon is being generated, which
leaves plenty of time for the pools to be allocated.

○ Once the tiling generation has finished, the generator requests items from the
pools and places them if they are valid. Repeats this step until all enemies are
spawned or the dungeon has run out of budget.

■ Each enemy has a certain budget cost that will be subtracted from the total
dungeon budget. The dungeon budget increases with dungeon size and the
number of consecutive dungeons the player has gone through.

○ Finally, when the dungeon is being reseted, all items are returned to the pool
and re-initialized.

4.2.4. Safe Zone
Every 5 dungeons and after a boss zone, instead of teleporting the player to the next
dungeon, it will be teleported to the safe zone, where the following actions can be made:

● Continue to the next floor: Return to the dungeon.
● Exit the dungeon: Exit the dungeon.
● Repair armor: interacting with the anvil will restore the players’ armor to its full.
● Craft new objects: using the crafting station with known recipes and materials to

create new objects

26



Safe zone layout

When the player exits the dungeon, all internal variables as well as enemy pools are reseted.

4.2.5. Boss Zone
The final room in that floor always consists of a boss zone, where the dungeon generation
basically follows the same process but changes once the tiling has finished. Once the tiling
has finished, a single enemy is spawned (a boss).

When the player attacks it, it will show a health bar on top, and the boss’ behaviour will
change to be aggressive (read more about enemy behaviour here).

A roaming boss, wait for the player to attack it.

27



An aggressive boss, and its health bar on top

When the boss is defeated, a timed chest (after this time
the chest will get destroyed) will appear with exclusive
loot.
Also, if the player does not want to fight the boss, it has
the option to run to the exit instead.

5. UI

5.1. UI Distribution

5.1.1. Main Menu:

We wanted to give the player a brief view of what the main level (Overworld) looks like from
the moment it launches it, which is why we decided to have the actual buttons on the side,
with the title on top and a moving background.

28



New Game: starts a new game

Continue (only available if a save exists): loads the saved game
state.

Settings: **

Quit: Exits the application

5.1.2. Pause Menu:

Having the same reasoning that the Main Menu has, we basically tried to keep everything
from the main scene while integrating everything we needed or thought was necessary for
the Pause Menu. When the player pauses the game, the camera is zoomed towards it.

Continue: resumes the game

Load (only active if a save exists): allows the player to quickly load a
previous game state.

Settings: **

Quit: Exits the application.

5.1.3. Character Page:

Equipment: Displays everything that the player has
currently equipped

Stats: Displays the current stats of the player. For HP and
Armor: Current / Max

Whenever a gear type item is equipped, its sprite will be
displayed in its assigned slot in the equipment section,
and the provided gear stats will be added into the Stats
section.

29



5.1.4. Inventory:

Allows the player to store a limited amount
of things. Each of the slot consists of a
button that is only active when something is
in it. Using an item has different effects
depending on the item type.

5.1.5. Bottom Bars:

Being at the bottom of the screen, both the health and armor bars needed to have distinctive
colors, which is why we opted to use red and light grey (health and armor, respectively). The
skills bar, on the other hand, consists of descriptive icons** that shall give a brief visual
description of it.

5.1.6. Recipe Menu:

Because we decided to make the crafting
workbench (limiting the crafting to this specific
object) instead of allowing the player to craft
everywhere, we opted for a more minimalistic
interface, where:
Recipe list: list of all the learned recipes
Ingredients: once a recipe has been selected, the
necessary ingredients to craft it will be displayed
here.
Craft Button: if the player has all the necessary
items to craft that object, this button will be active
and red, otherwise it will be inactive and grey.

30



5.2. Concepts

Initially, we planned to have the following items in the UI:
● An equipment section where everything that the player has equipped can be seen. Semi

transparent and not removable.
● An HP and Armor section where initially there would be an HP bar and an Armor bar on

top of it.
● An inventory section (its visibility can be toggled).
● A top bar which would have quick access to skills and usable items such as potions. **
● A quests bar which would display the title as well as a small text regarding the currently

active quest(s). **
Out of this initial UI concept, we removed what we thought was not achievable or didn’t
make sense for this prototype, which includes the quests bar **, the hotkey bar **, and the
equipment section (Character Page).

5.3. Text

Dialogs Damage text

Interacting Boss chest

31



6. Sound

6.1. Music References
● Stardew Valley - Calm and relaxing music for the Overworld to help the player relax

after some dungeon diving.
● Moonlighter - Music for the dungeon. Used to emphasise the danger theme within the

dungeon.

6.2. Where to place the sounds
Here is a list of where we want to introduce sound in the game and why (see sound in cut out
features):
● Menu buttons: click sound to give feedback when selected
● When an enemy or the player is hit: We want to give auditive feedback to the player

when he is hit.
● When the player interacts with things: An exclamation sound to tell the player that it has

interacted with something.
● When the player moves: Satisfying footstep when walking.
● Background music for the overworld / dungeon levels: Tense music to set the player

mood.
● Background music for boss battles: Really active music to give more intensity to the

battle.
● When the player completes a quest: A regarding sound that satisfies the player when a

quest is completed.
● NPC sounds simulation - speaking (Animal crossing): To give the player the feeling that

it is talking to someone.

7. Save game
● Interactable entity. When the player interacts

with the object, which is located in the player’s
house, it saves the current game.

● It stores the current player’s position, the
player’s inventory, equipped items, all the
items inside the player’s house chest and
the current player’s stats.

● After saving the game then a save game slot
is created allowing both menu buttons,
continue from main menu & load from pause
menu, to be pressed.

● When the player loads a previous game save
everything is then restored to what the save
game slot has stored.

● In the future we want to introduce here also the current quests that have been completed
so that they don’t become infinite. (see save game in cut out features)

32



8. Cut out Features

8.1. Art
● Most of the art we used in our project belongs to non copyrighted pages and does not

necessarily compliment each other. This includes both the visual and sound aspects of
the game. See bibliography for more.

● Designing all the sounds as well as the music for the game was definitely out of scope.

8.2. Quests
● For this prototype, we considered that making a global quest manager would have been

far too labor-intensive both in terms of time and complexity.

8.3. NPCs
● NPCs did not make it for this prototype due to the lack of cohesive lore it would’ve

required to create. We also planned to have a single shop where the player could spend
and gain some in game currency (gold) by buying or selling some materials or gear,
respectively, but was also discarded when we decided that dropping objects from the
enemies was not a possibility.

8.4. Items
● Having unique items initially required us to create the Questing Manager, which was

discarded for this prototype.
● In the tutorial, we intended to show the player the 4 types of available weapons and

show how they work to finally let the player choose one of those, which would be
selected as its starting weapon.

● 5 slots were planned for armor equipment but were reduced to 2 due to the amount of
recipes we would’ve needed to make to craft all the parts .

● Equipment upgrades were discarded for this prototype because we needed planned
them to be within the NPC’s.

● We planned to create customizable runes slots for each weapon but we did not have
time to implement it.

● Even though we had a basic random equipment generator, we quickly realised that the
player could cheat its way into its probabilities and force a better item to be spawned.

● Being virtually the same as throwing the weapons, we thought that having throwables
did not make much sense if the player can directly throw its weapon.

8.5. Dungeon
● Making a layered-based dungeon generation system required a lot of art manipulation

(which is fair to say that none of us knows how to do that properly), a very good
understanding on writing a cohesive and coherent lore and game state management, all

33



of which we considered was out of scope for this period of time. Shortcuts were also
discarded for the same reasons.

● The dungeon progression was closely related to making a layered-based dungeon
mostly in terms of different enemies and objects that shall be dropped exclusively on
certain areas, which was discarded for the same reasons. The current dungeon
progression depends on the amount of dungeons the player has generated in the same
run.

8.6. Tutorial
● We initially intended for the tutorial to be at the start of the game and then leave a

training area in which those mechanics could be explained again. In the end we created
a small area at the top of the player starting position which explains three basic
mechanics, attacking, throwing weapons and crafting. Letting the player choose its
starting weapon was also discarded due to the initial complexity of creating 4 different
weapons.

8.7. Extras
● We moved the hotkey bar to the bottom and changed the equipment section to a window

visibility of which can be toggled.
● Adding another way of acquiring loot was planned, and it would’ve mainly been drops

when an enemy dies.
● For this prototype, everything was made exclusively for mouse and keyboard,

gamepad controls were excluded mainly for any possible UI control problems.
● Having the Leveled Sword implemented was not one of our priorities and because of

this, its implementation got excluded from this prototype.

8.8. Sound
● We want to have sound across the entire game but, for this prototype, we only had time

to introduce some SFX to the buttons from the main menu and the pause menu.
● The rest of the SFX and OST will be introduced at a later point of the development but

the idea is to have at least the ones mentioned here.

8.9. Lore
● Very closely related to the dungeon, the main setup of the game requires the player to

progress through it, defeating its bosses and advancing through the different layers to
remove the curses that the village habitants have. Considering that we did not have the
time to create the layering system for the dungeon, we considered that adding any kind
of lore at this point of the project was out of scope for this period of time.

34



8.10. Save game
● As of now the player is only capable of saving its current position, inventory, stored

items at the house chest, equipped items and current stats but we also want to store
the current state of the quests so that when the player completes a quest it actually
becomes finished and therefore can’t be completed again.

● We haven’t included this in our save game because in the actual prototype we don’t
have any quests so we thought that it wasn’t needed at this point in time.

● Another thing that we want to store is the current state of some specific NPCs such
as the blacksmith, the first time you encounter that NPCs he will be inside the
dungeon but after rescuing him he will then appear at the village. This is one thing
that needs to be stored in the save game.

● In our prototype we don’t have the actual blacksmith or any relevant NPC that needs
this kind of system implemented and save alongside the rest of the save data so we
thought that it wasn’t needed at this point in time.

9. Bibliography
● Unreal Engine: https://www.unrealengine.com
● Dungeon tilesets & enemies

○ https://pixel-poem.itch.io/dungeon-assetpuck
○ https://0x72.itch.io/dungeontileset-ii

● UI
○ https://0x72.itch.io/dungeonui

● Characters
○ https://0x72.itch.io/pixeldudesmaker
○ https://superdark.itch.io/enchanted-forest-characters
○ https://superdark.itch.io/16x16-free-npc-pack

35

https://www.unrealengine.com
https://pixel-poem.itch.io/dungeon-assetpuck
https://0x72.itch.io/dungeontileset-ii
https://0x72.itch.io/dungeonui
https://0x72.itch.io/pixeldudesmaker
https://superdark.itch.io/enchanted-forest-characters
https://superdark.itch.io/16x16-free-npc-pack

